EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-TR-235388

National Ignition Facility Shot
Data Analysis Module Guidelines

S. Azevedo, S. Glenn, A. Lopez, A. Warrick, R.
Beeler

October 9, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

UCRL-TR-235388
NIF-5019322-AA

National Ignition Facility
Shot Data Analysis — Module Guidelines

Revision 3.5

NATIONA
IGNITION
FACILITY

Steve Azevedo, Steven Glenn, Aseneth Lopez, Abbie Warrick, Ric Beeler

September, 2007

LAWRENCE LIVERMORE NATIONAL LABORATORY
Lawrence Livermore National Security — Livermore, California — 94551

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security,
LLC, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.
Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401
Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

ii

Shot Data Analysis Module Guidelines NIF-5019322-AA

National Ignition Facility
Shot Data Analysis — Module Guidelines
Revision 3.5

Prepared by:
Name, Title Date
Reviewed by:
Name, Title Date
Name, Title Date
Name, Title Date
Approved by:

Name, Title Date

iii

Shot Data Analysis Module Guidelines

NIF-5019322-AA

Table of Contents

1.0 INTRODUCTION ...ttt r e e e e e e e e e annns
1.1 Module DeVEIOPMENT........cviieiesese et
1.2 Manual vs Automatic OPerationsccceierereriesesieee e

IR I 10T [T T T g T et o] [T

2.0 SETTING UP AN IDL DEVELOPER ENVIRONMENTccccvveee

3.0 IDL ANALYSIS MODULE GUIDELINES........cccotviiiiiiiiiiieeeiiiiee e,
3.1 Use FUNCLIONS, NOT PrOCEAUIEScviviieiiiierieiisieeeesi et
3.2 Pass Data through the Argument List with Keywordsccccconiiieienenenn
3.3 Provide Test Code and Data..........cccccerveeriirieiiiinicisenee s
3.4 Reduce DUPHCALIONouoiiiiiiiieee e e
3.5 Provide Early Error NOtification ...t
3.6 Document the MOUIEcooiiiiiie e
3.7 RETUIN IMETFICS. ...ttt
3.8 Follow Naming CONVENTIONS......c..cciiiiieiiieiieieieie et s
3.9 Use the Standard LayOULcceiiiiiieieie et s
3.10 Use IDL Structures as NEeded...........ccurevrireininieinieieisieeee s
3.11 Avoid Global Variables or Common BIOCKScccoiiiiniiiinicicccnes
3.12 Do Not Use Display COmMMANGScccoueiiieiiniireiinieieeie e e
3.13 LL0Q IMBSSAGESveveeueitienieeteeite et stee sttt esbe et be e sbe ettt e s et e st e e nbe e nre b nnennes

3.14 Use SUPPOIted ProCEAUIES..........coiiuirieitiieeieie et e

4.0 MODULE TESTING ..ottt e e
AL UNIE TEST oottt bbbttt
4.2 Integration Test (VerifiCation)cccoeiriiiiie e

4.3 Performance Validationoocuviiiceiee ittt e e tee e s eee e e s ebeeesaans

5.0 REVISION CONTROLoutuiiimiiiiiiinirnnrinnrieennrnneenrnennennnnennennnnnnes

iv

Shot Data Analysis Module Guidelines NIF-5019322-AA

6.0 SUMMARY oo 12
REFERENCES ..., 12
AP P EN D DX A 13

List of Figures

Figure 1. Shot Data Analysis Engine, Driver and Modules..ccccocooinininninnniiiccce 2
Figure 2. Template IDL MOdULE..........ccccooiniiiiiiiiiiiiiciiccice s 5

List of Acronyms

CDR Conceptual Design Review

CM Configuration Management

CDMS Calibration Data Management System
CMS Content Management System

CMT Campaign Management Tool

CVS Concurrent Versioning System

FDR Final Design Review

HDF Hierarchical Data Format

ICCS Integrated Computer Control System for NIF
IDL Interactive Data Language

IPT Integrated Product Team

LP Laser Performance

NIF National Ignition Facility

0)1 Optics Inspection

PDR Preliminary Design Review

RI Responsible Individual

RS Responsible Scientist

SDA Shot Data Analysis

SDI Shot Data Integration

SDV Shot Data Visualization

For a more complete list of NIF acronyms, see http://www-r.lInl.gov/nif/admin/documents/NIF acronyms.pdf

Shot Data Analysis Module Guidelines NIF-5019322-AA

1.0 Introduction

This document provides the guidelines for software development of modules to be included in Shot Data
Analysis (SDA) for the National Ignition Facility (NIF). An Analysis Module is a software entity that
groups a set of (typically cohesive) functions, procedures and data structures for performing an analysis
task relevant to NIF shot operations. Each module must have its own unique identification (module
name), clear interface specifications (data inputs and outputs), and internal documentation.

It is vitally important to the NIF Program that all shot-related data be processed and analyzed in a
consistent way that is reviewed by scientific and engineering experts. SDA is part of a NIF Integrated
Product Team (IPT) whose goal is to provide timely and accurate reporting of shot results to NIF
campaign experimentalists. Other elements of the IPT include the Campaign Management Tool (CMT)
for configuring experiments, a data archive and provisioning system called CMS, a calibration and
configuration database (CDMS), and a shot data visualization tool (SDV).

We restrict our scope at this time to guidelines for modules written in Interactive Data Language, or
IDLL. This document has sections describing example IDL modules and where to find them, how to set
up a development environment, IDL programming guidelines, shared IDL procedures for general use,
and revision control.

1.1 Module Development

We will refer to a “Developer” as anyone who writes and implements Analysis Modules. A Developer
could be a member of the SDA software development team (referred to as “SDA Developers”), or they
could be Diagnostic Responsible Scientists (RS), Campaign Experimentalists, Responsible Individuals
(RI), Diagnostics Engineers, and others. Developers will often perform module development and testing
in a local compute environment (we will call the “Desktop” environment) using local data for testing.
Then, once it is ready for integration and release, the module is transferred to the SDA development team
members who work with the Developer on reviews, validation of results, release schedules and
configuration management.

This document is directed mostly toward the module development step, and the standards that will
make the integration and release steps go smoothly, which will reduce the time and cost of
implementation and long-term maintenance . For completeness, the SDA Developers follow a rigorous
software deployment methodology that involves:

e Requirements gathering — Reviewed by RS/RI/Users

¢ Conceptual Design — Module flow (Visio diagram); Reviewed by RS/RI/Users

e Preliminary Design — Data inputs/outputs (Spreadsheet); Reviewed by RS, Developers

¢ Final Design — List of functions to develop; Reviewed by RS, Developers

¢ Development — Implement algorithms and performance tests; Reviewed by RS

¢ Integration testing — Performed by Developers/Testers

¢ Final Documentation — Reviewed by all

e Regression test — Deliver data and test procedures for automatic testing

* Release to Production

e Revision Control and Management

1IDL is a registered trademark of the Research Systems, Inc. (RSI); see [1] for details.

1 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

1.2 Manual vs Automatic Operations

Analysis modules must be capable of running both manually (under direct user control) and
automatically (without user intervention during the NIF shot cycle). Modules that process production
data automatically after a shot are maintained by the SDA module development team.

For automatic SDA on NIF, the modules will be called by the Shot Data Analysis Engine [3] and Drivers
[4]. A block diagram of the automated analysis process is shown in Figure 1. The SDA Engine provides
the framework for triggering, sequencing and queuing (scheduling) the analysis module operations,
while the Analysis Driver controls the flow of data and results using the NIF Content Management
System (CMS). The analysis data flow may involve a group of modules to perform an overall analysis
task, such as “analyze Static X-ray Imager data”.

The Analysis Driver reads from data
sources such as CMS and HOF files
to supply values for the input
arguments of an analysis routine. [t Analysis

can also write the analysis resulis
back into CMS or HOF files, Routing A Sarver

Analysis Enging @———— Analysis Driver Routine B
The Analysis Engine The Analysis Driver makes remote
of the Analysis Driver. irvoke an analysis routine,
Besides calling the analysis Routine C
routine, the driver can also make

orchastrates the exacution calls to the analysis server to
reinota calls to create variables

and set their values, and to get
analysis results,

The analysis sarver execulas the
analysis routines, [t recelves remola
calls from the Analysis Driver.

Figure 1. Shot Data Analysis Engine, Driver and Modules. The Engine invokes Analysis Drivers based on an
analysis flow model. The Driver accesses the data to/from the Content Management System and initiates the
(possibly multi-step) module routines of the modules on an Analysis Compute Server.

The IDL module functions that are directly called by the Drivers (Routines A, B, and C in the figure) will
be referred to as “top-level functions”, which may have their own lower level functions or procedures.
These top-level analysis functions must be able to accept data from, and return data to, the Analysis
Driver and Engine through the argument list. The input data will include configuration data, raw data,
calibration data and/or processed data. Output data will include processed data, as well as error, quality,
and other information. All of the above data, and the Analysis Modules that produce a processed result,
are collectively referred to as the result’s “pedigree”. Data and the modules themselves are all available
for download and can be run manually as desktop modules (independent of the Engine).

2 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

1.3 Guiding Principles

For shot data analysis in NIF, developers should adhere to the following guiding principles that are listed
below and were established in our initial requirements (see [1]).

¢ Analysis functions will be published and “transparent” using known calibration measurements;
i.e., everyone will know what steps were performed to arrive at the results, and they have access
to those results.

e The data will be tracked and controlled so that the analysis pedigree is known and the
visualization team can display the results. Hand-entered figures or undocumented calculations
will be strongly discouraged. The data will be stored in CMS.

e Analysis steps need to be configurable, based on the type of shot and the components of the NIF
system that are participating.

e Where possible, uncertainty (error bounds) and data quality metrics will be measured/calculated,
published and archived with the data.

¢ Analysis results will be made available in a time period so they can be applied to the next
decisions. The current NIF data analysis requirement is 30 minutes for “quick looks” of shot
data.

e Comparisons to off-line data or simulations will be supported. These modeled or simulated data
will be made available to the analysis software when available, preferably prior to the shot, for
comparison purposes; i.e., the expected results (and error bounds) will be compared to measured
data as part of the analysis.

e The ability to re-run the analysis of the data, off-line from the shot, using different parameters or
analysis methods will be supported. Any data from prior shots will be available for this off-line
analysis.

e Likewise, the user will be able to download the analysis algorithms for the purposes of running
the analysis software on synthetic or customized data not associated with any shot, such as
“what-if” studies and tuning tests.

e Emphasis is on data that are automatically acquired and are required for making shot-related
decisions, though other data will be involved as well.

2.0 Setting up an IDL Developer Environment

Application Developers can set up a local IDL development environment as they wish, whether it is on
their own machine or a server, using the manuals that come with an IDL license. After installing IDL, go
to the NIF Wiki site? https://nif-wiki.llnl.gov/display/sdi/Downloads and download the zip file
sda_idl_X._.X.X.zip (where X.X.X is the latest version). This file contains IDL utility functions and
procedures to handle common tasks (error reporting, message logging, etc.), as well as test functions, a
template file (td_func_template.pro in Figure 2 and described later), and some common global
variable definitions in td_retcodes. inc and td_logdefs.inc. A test function td_testenv.pro
can be executed in IDL to demonstrate that the environment is working properly; it generates a log file
td_log_date. txt in the TD_LOGFILEPATH directory. (See Appendix A for more details.) Other
useful files in that directory are described in the README . txt file, also on the Wiki site.

2 Access to the NIF Wiki can be requested at https://gethelp.lInl.gov through the Remedy system.

3 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines

NIF-5019322-AA

Copyright 2007 University of California
Lawrence Livermore National Lab
National Ignition Facility

File: $RCSFile: td_func_template.pro,v $

Revision Number: $Revision: 1.7 $

Last Modified: $Date: 2007/09/18 20:54:46 $
$Author: glenn2l $

; AUTHOR:
A. Developer, 5/30/07

; PURPOSE:
Computes sum and difference of two identically-sized images. This section

should contain relevant background information, a description of the routine does,

a list of known limitations, and any critical assumptions made about its inputs.

; EXAMPLE:
a = dist(256)
b = shift(a, 128, 128)

errStatus = td_func_template($
i $
$
o
a_plus_b, $
diff_img = a_minus_b, $
quality_flag = goodQual, $
errmsg = errmsg)

: if (errStatus ne 0) then $
; print, errmsg $

H else tvscl, sum_img

: REFERENCES:

; Some_document.pdf

INPUT PARAMETERS:

NAME TYPE DESCRIPTION
imgl 2D array First image
img2 2D array Second image. Dimensions and type must match imgl

Correction factor.
List of bad pixel indices.

fudge_factor float
bad_pixels uint

; OUTPUT PARAMETERS:

NAME TYPE DESCRIPTION
sum_img 2D array Normalized sum of imgl and img2
diff_img 2D array Difference of imgl and img2

quality_flag int
errmsg string

Results quality flag: 1 if good, O if bad.
Error description. Empty if errStatus is O.

; RETURNED VALUES:
NAME TYPE
errStatus int

DESCRIPTION
0->success, -1->failure

; REVISION HISTORY:

; NAME DATE CHANGE DESCRIPTION
; aperson33 04/23/07 New file.
; buser7 10/05/07 Added over/underflow error handling.

FUNCTION td_func_template, $ 3\
imgl = imgl, $
img2 = img2, $
fudge_factor = fudge_factor, $
sum_img = sum_img, $

Used by the CVS Version
Control; DO NOT MODIFY

Header
Comment
Block

diff_img = diff_img, $
quality_flag=quality_flag, $
errmsg=errmsg

module_name = "FUNC_TEMPLATE" ;
@td_retcodes. inc N
@td_logdefs.inc N
errStatus = TD_STATUS_NORMAL M
quality _flag = TD_QUALITY_BAD ;

errmsg =

; for message logging

include return code definitions
include log filter level definitions
initialize error status value
initialize quality flag

initialize returned error message

J

Function name &
parameters; Variables
passed as keywords

Store a start message

td_log, "<-- Begin®", td_logdefs.INFO, module_name=module_name . .
-9 at —rogdets Hie uie <4— in thelog file

Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

; Install error handler to avoid propagating errors N\
; to caller.

catch, errStatus
iT (errStatus ne TD_STATUS_NORMAL) then begin Define Error handler;
catch, /cancel ; deinstall to avoid infinite loop >
td_logerr, **** Error”, module_name=module_name ; log error message DO NOT MODIFY
help, /last_message, output=msgtxt ; get text for last error
errmsg = "Error: " + msgtxt[0] ; set returned error text
return, TD_STATUS_ERROR
endif)

; Input validation. Note that these jump to the error handler above.

if (~keyword_set(imgl)) then $
message, "Missing input keyword imgl-”

if (~keyword_set(img2)) then $
message, "Missing input keyword img2*

if (n_elements(imgl) It 1) then $ 3 3
message, "imgl is empty" > Verify that input

rameters are in range;
if (n_elements(img2) It 1) then $ parameters a e ange;
message, "img2 is empty” Iog a message if not

if (-~ keyword_set(fudge_factor)) then begin

fudge_factor = 1.0
endif else begin

if ((fudge_factor It 0) || (fudge_factor gt 1)) then $
message, string(fudge_factor, $
format=" (%" fudge_Ffactor value of %f exceeds range of (0,1)'")") j

endelse
_ _ _ 3
; Check scope of output variables, if appropriate.
if (- arg present(sum_ing)) then $. Verify that output variables
message, "summed image result cannot be modified” are specified; log a message if
if (-~ arg_present(diff_img)) then $ not
message, "difference image result cannot be modified* p, Add log statements for

td_log, "Arguments validated®, td_logdefs.DEBUG1, module_name=module_name

debugging

TODO: insert code analysis code here User-supphed code: per m the analYSIS
; function and calculaté quality checks

qualityFlag = TD_QUALITY_GOOD

td_log, "--> End", td_logdefs.INFO, module_name=module_name
Eﬁgurn, TD_STATUS_NORMAL } Return with no error

Figure 2. Template IDL Module.

3.0 IDL Analysis Module Guidelines

The Application Developer has many ways to write an analysis module. However, developers should
adhere to the following general guidelines.

3.1 Use Functions, not Procedures

The SDA Engine invokes modules as IDL functions, not procedures. The top-level function is expected to
return at least one value — an error flag. Internal to the module, procedures may be used. The top-level
function file name must match the function name itself. Developers are encouraged to use the symbolic
constant TD_STATUS_NORMAL (or TD_STATUS_ERROR) for return values to indicate success (or failure) as
illustrated in the template module.

5 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

3.2 Pass Data through the Argument List with Keywords

In order to run automatically under the SDA Engine, the module cannot perform its own interaction with
the user or data archive. All data needed (or generated) by the module must be transferred in or out of
the top-level function through its argument list and return value; that is, automated modules do not
make database calls directly, or use global variables to pass information, and internal variables are not
visible to the Engine.

In addition, functions should be called with IDL keyword arguments to avoid errors in the calling
sequence. The syntax in IDL argument lists is to enter a keyword name followed by an equal sign ("=")
prior to the value to which the keyword should be set. The value can be a constant, an expression, or an
IDL named variable. (See the IDL documentation [2] for more details.) By employing keywords in
function calls, the argument list can be order independent and the arguments can be easily validated. An
example function call using keywords for the fictional function above is given in its header.

a = dist(256)
b = shift(a, 128, 128)
errStatus = td_func_template($
imgl = a, $
img2 = b, $

fudge_factor = 0.33, $
sum_img = a_plus_b, $
diff_img = a_minus_b, $
quality_flag = goodQual, $
errmsg = errmsg)

3.3 Provide Test Code and Data

In the process of developing modules, it is assumed that one or more examples of sample input data will
be available for testing the algorithms. The Developer should generate a simple unit-test function that
invokes the module with the sample data that produces known results. When development is complete,
the sample data and the unit-test function should be made available to the SDA development team along
with the module source code. That way, when the module is turned over for configuration management
and insertion into the automatic analysis procedures, there are examples that can be used to test their
operation.

A unit-testing procedure or function should be named test_pkg. pro, where pkg is the name of the
module package. The unit-test code should invoke the module with the sample data set(s), exercising as
much of the module functionality as possible.

3.4 Reduce Duplication

Developers are encouraged to look at the IDL libraries and td_uti I directory for shared functions that
can be re-used. Duplication of functionality will lead to maintenance issues, and should therefore be
minimized. In the initial version of this directory, there are functions for basic image integrity checking
(td_camera_imagecheck) and log file utilities (td_l0g).

3.5 Provide Early Error Notification

Modules should verify that required input information is present, and should provide early error
notification before lengthy analysis is performed. If input data or calibration values must be within a

6 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

known range, for example, the module should check for that range and at least log a message (if not
return an error flag and error message).

3.6 Document the Module

Besides the code itself (the .pro file), there are three documents that must be associated with a module: a
module requirements document, a module input/output summary spreadsheet, and a module data map.

The module requirements document contains the following information.
¢ Overview of the module (scope, description, uses)
e Usage — Types of data/instruments for which it is used
¢ Calibration information needed (if applicable)
¢ Data flow and a data summary
e Algorithm theory including references, if available.
e Example input data and results, including off-normal data
e Metrics for measuring data quality (that are returned from the module)
¢ Visualization requirements (high level)
e Testing methods (see Section 4.0 Module Testing)
e Revision and review history

The module input/output summary spreadsheet provides a specific and detailed list of arguments and
their properties so that the interface to the module is clearly defined.

The module data map is another spreadsheet that defines, for each use of the module, where the input
data is to be found and where the output data is to go. For example, an Image Background Correction
module may be used for both streak cameras and for static-frame cameras, but their resulting data may
be stored in very different places in the database using CMS. The module data map lists the specific data
storage locations in the data base for each argument in the input/output summary, and for each use of the
module.

All three of the above documents are under revision control for those modules maintained by the SDA
development team. Examples of all of these documents are available on the NIF wiki site, or by request.

3.7 Return Metrics

SDA Modules should return metrics about the results—for example, values that indicate how well the
algorithm performed (a “quality flag”) and the statistical error bounds (one-sigma) for the results when
possible. The file td_retcodes. inc in the td_uti I package contains the following definitions:

e td_quality=1 Good quality output data

e td_quality=0 Bad quality; the output data may have a problem

The other metrics and return parameters should provide more information about the severity of the
problem and the performance of the algorithm. For multi-step modules, separate quality flags may be
needed for each step, with the final quality flag being the product of each one.

3.8 Follow Naming Conventions

A naming convention has been established to help users describe, organize and find modules. Since IDL
has one global namespace, these conventions will also help reduce naming conflicts.

7 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

Lower-case letters, numbers and underscores — All functions should start with a letter and
contain only letters, numbers and the underscore character (as a separator). No other special
characters should be used.
Lower case — All functions and file names should only use lower-case letters (no upper or mixed
cases) to facilitate operation on diverse platforms.
Routines for general shot data domains should have the area tag at the beginning of the name as
shown:

Ip laser performance

oi optics inspection

td target diagnostics
Specific routines have both the domain tag and the sub-domain tag in the name, followed by a

descriptive phrase of the routine. For example, sample routine names for target diagnostics are:
td_sxi_pattern_find
td_img_flatfield
td_img_deadpixfix

3.9 Use the Standard Layout

Each module should contain the programming elements and comment blocks shown in the template
(Figure 2) and listed below:

Header comment block — Includes copyright notice, version control information, author, purpose
of the code, references, input and output parameters (with data types and description), returned
values, assumptions, library dependencies, example usage and revision history. The version-
control block should be left unchanged as the revision management system (CVS) uses those
fields to track changes (see Section 5.0 Revision Control).
Function (or procedure) name and parameters — Include the returned error status and error
message.
Logging definitions — The command “@td_logdefs. inc” defines the message logging flags to
be used.
Return code definitions — The command “@td_retcodes. inc” defines the symbolic constants
for returned error status and results quality flags.
Error handler — Establishes a common error handler that forces a message and graceful exit,
while avoiding infinite loops.
Parameter verification — A block that checks the validity of parameters, providing clear error
messages in case of problems, is good programming practice.
User-supplied algorithm — Performs the operations stated in the purpose. Liberal comments are
always recommended.
Return the error flag in all cases with the following values (from td_retcodes.inc)

o TD_STATUS_NORMAL No error

o TD_STATUS_ERROR Error

A module file can also contain procedures or functions that are only used by the main function.
Comments should be employed throughout the file to document the module.

Messages of various types (errors, warnings, information, debug) should also be used to aid
development and maintenance (see Section 3.12 Log Messages).

8 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

3.10 Use IDL Structures as Needed

IDL data structures or classes can be used in SDA modules, and their use is encouraged. Structures help
organize the passing of values from one function to another, simplify input parameter checking,
accommodate future modification request, and increase maintainability. General and detailed
instrument structure elements and types will be determined at a later date.

3.11 Avoid Global Variables or Common Blocks

Avoid the use of global variables or common blocks that pass data implicitly. Otherwise, behavior of a
function may not be apparent from its interface. (The message logging variables in Section 5.13 are a
special case since a single point of global access is required.) Also, if there are dependencies on foreign
procedures or libraries, they should be noted in the header and care should be taken to avoid duplication
of names across all procedures in use.

3.12 Do Not Use Display Commands

The Developer is discouraged from using display output commands such as tv, plot, device, or
graphical widgets such as i image or itool within the normal path of execution. This is because the
Analysis Engine framework does not support graphical screen output. Instead, the calling routine, or a
separate visualization tool, should be employed to display data results from the module.

3.13 Log Messages

To aid debugging, a message-logging package has been implemented so that text output from modules
can be systematically stored in a central location. The message logging mechanism is not intended for
analysis results storage.

Messages are sent to a common log file established by the SDA Engine (or calling procedure). The user
can set a “messaging level” that establishes at run-time whether messages are written or not using the
td_set_log_TFilter routine before running an analysis module. We define the following message
levels:
e Error — Causes the module to return immediately with error flag set
¢ Warning — Serious problem that does not cause a halt (or error)
¢ Info - No problems; report that a line in the code is reached at a certain time
¢ Debug - Provide additional information for debugging purposes. We define three levels of
debug logging (DEBUG1, DEBUG2, DEBUGS3) that output successively more information. The
level DEBUG_ALL turns on all the above messaging.

It is up to the developer to decide where and when messages should be sent to the log file and at what
level. Problems are easier to diagnose if frequent messages are logged that contain incremental results or
progress indicators. On the other hand, it is easy to over-comment; e.g., messages reported in a tight loop
can flood the log, causing confusion and, in extreme cases, adversely affecting throughput and disk
space.

The “td_log” procedure is the function for writing all messages using the following construct (also
demonstrated in Figure 2):

td_log “msg”, msg_level, [module_name="routine_identifer’]

9 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

where “msg” is a string that will be written to the log file, and msg_level is one of the following global
values corresponding to the above messaging levels:

e td_logdefs_ERROR

e td_logdefs.WARNING

e td_logdefs.INFO

e td logdefs.DEBUG1

e td_logdefs.DEBUG2

e td_logdefs.DEBUG3

The “msg” string should be descriptive enough to provide the reader with real information about the
process. See examples of message logging in the provided code template.

Writing to “standard output” can be done also. During automatic operation, the Analysis Engine
captures anything written to standard output and saves it in a log file along with the other log messages.
To maintain consistency of messages, using the td_log mechanism is preferred.

3.14 Use Supported Procedures

As with all commercial and open source software packages, new releases of, say, IDL will require review
and testing of existing code—and changes are likely to be needed to maintain compatibility. To reduce
problems of obsolete functions and other effects, Developers should use clearly-supported functions and
procedures that are not expected to change in the future. Backward-compatibility tests will be performed
on all SDA software before a new version of commercial software is employed.

4.0 Module Testing

Before a module is accepted for use, it must go through three types of testing — unit test (stand-alone),
integration test (in the SDA Engine), and performance verification. The testing and documentation
requirements, described in this section, are the same whether developed by RS or the SDA team.

4.1 Unit Test

As described in Section 3.3 Provide Test Code and Data, the Developer will supply a unit test function
(test_pkg.pro), with supporting data, which can be performed in a manual or stand-alone mode. The
input data may originate from anywhere—previous experiments or simulated data from the RS or simply
made up—as long as it exercises the module functions, including common error modes. This type of
testing can be simply a function to check input/output data types and graceful error handling. It only
verifies that the resultant data is reasonable, not the accuracy or precision of the results.

4.2 Integration Test (Verification)

This type of testing verifies the resulting data of an individual module or a group of modules that are
invoked by the SDA Engine. It requires that the test data be located in the central data archive where the
SDA Engine can retrieve the data, provide data to the module and store resulting data to the archive.

10 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

The integration tests only validate the module operation meets requirements given the (limited) set of
test data.

Prior to code release, a control script will systematically run each test data set in the central archive
through the module and compare the results to stored values. Both normal and off-normal data should
be included in the integration tests. The archive of test data will increase in size over time as new test
cases are discovered.

4.3 Performance Validation

In conjunction with the scientific expert (the RS), the module developer will perform a series of tests, with
many types of inputs and parameters, to validate the scientific merit of the output results. Each new set
of input data, with its own uncertainties and noise sources, can cause unexpected numerical results
instabilities in the module algorithms. Performance validation is a process that continues throughout the
useful life of the code.

5.0 Revision Control

For Analysis Modules that are run automatically, the SDA development team is managing the software
configuration through a standard version control system called CVS. A separate document [5] describes
the CVS structure and methodology for the SDA version control. The main goals are to

1. Independently manage and release groups of source files in Analysis Packages — Example
packages are common utilities, camera corrections, SXI analysis, Dante analysis, etc.

2. Support the establishment of analysis pedigree — Keep track of the code version that generates a
particular analysis result, in addition to the raw data, calibration and other parameters that affect
the data.

3. Support dependency analysis — Be able to determine which results are potentially affected when
a module group is revised, and initiate analysis re-runs if needed. This feature may also be used
to guide testing.

4. Maintain transparency — Allow all who are interested in NIF results be able to see how those
results were achieved at every step.

The revision control procedure described in [5] has the following general outline that will be refined over
time. It applies mainly to code that is managed by the SDA development team.
¢ Change requests — Requests to make changes can be e-mailed to any member of the SDA
development team, where they are assigned and given a priority.
¢ Design the repair — The SDA Developer will design the modifications needed and review them
with appropriate personnel (RS and/or SDA team).
¢ Implementation — The changes are made and tested on a unit basis in the SDA development
environment. The results are reviewed by the SDA team.
¢ Documentation changes — Both the module requirements document and the internal code
documentation must be updated.
e Regression test — Deliver data and test procedures for automatic testing.
¢ Release to Production.

11 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

6.0 Summary

This document presents the Shot Data Analysis module development guidelines for IDL codes. For
modules that are to be used in automatic analysis following a NIF shot, adherence to these guidelines
will be required. Templates and common procedures are available in the NIF Wiki (https://nif-
wiki.llnl.gov/display/sdi/Downloads) to aid the developer.

References

1. “Shot Data Analysis Conceptual Design Review”, NIF Internal Document, https://nif-
wiki.llnl.gov/display/sdi/CDR, Dec 2006.

2. Gumley, L. E., Practical IDL Programming, Morgan Kaufmann, 2001.

3. Bettenhausen, R. C., “Shot Analysis System Conceptual Design”, v1.1, WBS5 Analysis FW Concept Sys Des
vi1.1.doc, Dec 2006.

4. Bettenhausen, R. C. and Mak, R., “Shot Analysis System Driver Design”, v1.0.4, in progress, June
2007.

5. Glenn, S., “Shot Analysis Module (IDL) Configuration Management”, in progress, 2007.

Revision Log:

Rev. Date Pages Brief Description of Revision
1.0 11/22/2006 All | Initial Version (A. Lopez)
1.1 11/30/2006 All | Format Change (A. Warrick)
11/30/2006 1 Introduction (R. Beeler)
11/30/2006 1 Introduction, module/procedure (A. Lopez, R. Beeler,
SDA Team)
12/01/2006 2 Add tag to section 2 (A. Lopez)
1.2 12/07/2006 4-5 Module acceptance, backward compatibility (A. Lopez)
1.3 12/14/2006 4-5 Backward compatibility (A.Lopez)
2.0 3/21/2007 1-3 Expand on module explanation, add module and
procedure section (A. Warrick)
3.0 7/10/2007 All Expand in all areas for general use (S. Azevedo)
3.1 7/16/2007 All Include templates (S. Azevedo)
3.2 8/27/2007 All Major changes (S. Azevedo)
3.3 9/11/2007 All Refinements (S. Azevedo)
3.4 9/28/2007 All | Final Templates (S. Azevedo)
3.5 10/1/2007 9,13-14 | Log info; Added Appendix A (S. Azevedo, S. Glenn)

12 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

Appendix A

Example module: td testenv.pro

In Section 2.0 Setting up an IDL Developer Environment, we introduced a sample IDL file that
can be used to test the user’s environment. Once the environment is established, load the
td_testenv.pro file into IDL and type the two commands highlighted in the figure below —
td_setpath to set the directory paths and td_testenv to perform a simple saturated-pixel correction
and write information to the log file. The screen output should appear similar to Figure A-1.

. IDL Development Environment g@@

File Edit Search Run FProject Macros Window Help
EEFEIEENEEEGEEEE EEE I EEEE T EEE F
I~ i =

3

Installation number: 204041,
Licensed for use by: Lawrence Liwvermore Natlonal Lab

% Compiled module: PREF_MIGRATE.

% Compiled module: XREGISTERED.

% Compilled module: PATH_SEF.

% Compiled module: REWERSE.

% Compiled module: XMAMAGER.

Display depth: 24

Color table size: 256

IOL> td_setpath

% Compilled module: TO_SETFATH.

Working directory = Ahomesazewvedo3/idl /sda_1idl
IDL source home = shomesazevedo3s1dls/sda_1dl
directory list =

fhomesazevedo3d s 1dl/sda_idlstd_util test:/homesszevedods/idl /sda_idl td_util: homesaz
IDL> td_testenw

% Compilled module: TO_TESTENY.

% Compiled module: TO_LOG.

% Compiled module: TOLOG__DEFINE.

% Compilled module: BIN_DATE.

Opened log file ../ td_log 20070919_145735.txt
% Compiled module: TOD_SATFIX_TESTL.

% Compiled module: TOD_CAMERA_SATRIX.

% Compiled module: MORFH_CLOSE.

% Compilled module: TO_CLOSE_LOG_FILE.

ok Enwlronment OK ok

Check log file for additional messages

J=d I =

&P 1oL |

Enter the IDL command.

Figure A-1. IDL screen output for td_testenv.

13 Version 3.5 (10/01/07)

Shot Data Analysis Module Guidelines NIF-5019322-AA

The module will generate a log file that can be found in the TD_LOGFILEPATH directory, where
TD_LOGFILEPATH is an environment variable that is set in IDL (default is the current working
directory). Contents of the log file should resemble the output below.

2007-09-28 03:01:50 10 TESTENV <-- Begin

2007-09-28 03:01:50 10 SATPIX_TEST1 **** Begin Saturated Pixel Test 1

2007-09-28 03:01:50 10 SATPIX <-- Begin

2007-09-28 03:01:50 03 SATPIX Arguments validated

2007-09-28 03:01:50 00 SATPIX image min, max, median intensity = 0.000000,
255.000000, 67.000000

2007-09-28 03:01:50 00 SATPIX bright threshl, thresh2, nl, n2 = 251, 246, 4207, 4207
2007-09-28 03:01:50 00 SATPIX bright threshl, thresh2, nl, n2 = 255, 250, 3976, 4207
2007-09-28 03:01:50 03 SATPIX Found 1 bright-saturated lines with minimum length 77
2007-09-28 03:01:50 03 SATPIX Finished bright saturation analysis

2007-09-28 03:01:50 00 SATPIX dark threshl, thresh2, nl, n2 = 1, 6, 140, 137
2007-09-28 03:01:50 00 SATPIX dark threshl, thresh2, nl1, n2 = 0, 5, 115, 137
2007-09-28 03:01:50 03 SATPIX Found 0 dark-saturated lines with minimum length 77
2007-09-28 03:01:50 10 TD_CAMERA_SATPIX --> End

2007-09-28 03:01:50 10 SATPIX_TEST1 quality = 1

2007-09-28 03:01:50 10 SATPIX_TEST1 bright_frac= 0.064194, 0.060669

2007-09-28 03:01:50 10 SATPIX_TEST1 dark_frac 0, 0.001755,

2007-09-28 03:01:50 10 SATPIX_TEST1 bright_sens= 0.000000, -0.058099

2007-09-28 03:01:50 10 SATPIX_TEST1 dark_sens 0, 0.191304,

2007-09-28 03:01:50 10 SATPIX_TEST1 **** Completed Saturated Pixel Test 1

2007-09-28 03:01:50 10 TESTENV --> End

Figure A-2. Output log for td_testenv.

14

Version 3.5 (10/01/07)

